# Phys514 Fall 2013: Homework 1 Solution

TA: David Chen\*

## 1 Foot 2.4 (25 pts)

The probability is given by

$$\int_{0}^{r_{b}} 4\pi r^{2} |\psi(r)|^{2} dr = \frac{4}{a_{0}^{3}} \int_{0}^{r_{b}} r^{2} e^{-2r/a_{0}} dr$$
$$= 4 \int_{0}^{r_{b}/a_{0}} x^{2} e^{-2x} dx$$
$$= 4 \int_{0}^{r_{b}/a_{0}} x^{2} (1 - 2x + \dots) dx$$
$$= \frac{4}{3} \left(\frac{r_{b}}{a_{0}}\right)^{3} + \mathcal{O}\left(\frac{r_{b}}{a_{0}}\right)^{4}$$

The electronic charge density is

$$\rho_e(r) = -e |\psi(r)|^2$$
  
=  $-\frac{e}{\pi a_0^3} e^{-2r/a_0}$   
=  $\boxed{-\frac{e}{\pi a_0^3} \left(1 - \frac{2r}{a_0}\right) + \mathcal{O}\left(\frac{r}{a_0}\right)^2}$ 

# 2 Foot 4.3 (25 pts)

Given the binding energies in sodium, we can calculate  $n^* = \sqrt{13.6 \text{eV}/E}$  and  $\delta = n - n^*$ 

| Configuration | E[eV] | $n^*$ | $\delta_s$ |
|---------------|-------|-------|------------|
| 3s            | 5.14  | 1.63  | 1.37       |
| 4s            | 1.92  | 2.66  | 1.34       |
| 5s            | 1.01  | 3.67  | 1.33       |
| 6s            | 0.63  | 4.65  | 1.35       |

We observe that the quantum defect varies slightly with n

The binding energy for 8s in sodium is<sup>1</sup>  $E = 13.6 \text{eV}/(8 - 1.35)^2 = 0.31 \text{ eV}$ ; and in hydrogen is  $E = 13.6 \text{eV}/8^2 = 0.21 \text{ eV}$ . The valence electron in sodium is more tightly bound to the core than in hydrogen.

<sup>\*</sup>dchen30@illinois.edu

 $<sup>^1\</sup>delta_s = 1.35$  for n > 5 (Foot), but taking the average is also fine.

#### 3 Foot 4.6 (25 pts)

The given transitions are necessarily from 4s to np, since  $\Delta l = \pm 1$  in electric dipole transitions. The following table shows the binding energy  $E = IE - hc/\lambda$ , the effective principal number  $n^* = \sqrt{13.6\text{eV}/E}$  and the quantum defect  $\delta = n - n^*$  for the transitions, all starting from  $4s_{1/2}$ 

| $\lambda[\text{nm}]$ | Final state | E  [eV] | $n^*$ | $\delta_p$ |
|----------------------|-------------|---------|-------|------------|
| 769.9                | $4p_{1/2}$  | 2.729   | 2.23  | 1.77       |
| 766.5                | $4p_{3/2}$  | 2.722   | 2.24  | 1.78       |
| 404.7                | $5p_{1/2}$  | 1.276   | 3.26  | 1.74       |
| 404.4                | $5p_{3/2}$  | 1.274   | 3.27  | 1.73       |
| 344.7                | $6p_{1/2}$  | 0.743   | 4.28  | 1.72       |
| 344.6                | $6p_{3/2}$  | 0.742   | 4.28  | 1.72       |

The next doublet is  $4s_{1/2} \rightarrow 7p_{1/2}, 7p_{3/2}$ . To find the corresponding wavelength, we calculate the average quantum defect  $\delta_p = 1.74$ , then the binding energy  $E = 13.6 \text{eV}/(7 - 1.74)^2 = 0.491 \text{eV}$  and finally  $\lambda = hc/(4.34 - 0.491) \text{eV} = \boxed{322.1 \text{nm}}$ . We estimate the splitting from the formula  $\Delta E_{FS} = \frac{Z_i^2 Z_o^2}{(n^*)^3 l(l+1)} \alpha^2 hc R_{\infty} \propto 1/(n^*)^3$ , where the splitting for 6p can be used as a reference. We obtain  $\Delta E_{FS} \approx (\frac{4.28}{5.26})^3 0.001 \text{eV} = \boxed{0.5 \text{meV}}$  and the splitting in wavelength is therefore  $\Delta \lambda_{FS} \approx |d\lambda/dE| \Delta E = hc/(3.85 \text{eV})^2 0.5 \text{meV} \approx \boxed{0.04 \text{nm}}$ 

### 4 Foot 4.10 (25 pts)



(a) Part (5.i): Psi for two different initial values, with  $E/E_0 = -0.25$ , l=1 and step=0.02. The shape is the same (note the log scale)



(c) Part (5.iii): Psi for two trial energies, with l=0 and step=0.02



(b) Part (5.ii): Psi for two trial energies, with l=1 and step=0.02



(d) Part (6): Psi for two different eigenenergies, with l=0 and step=0.02. The results are consistent with  $E/E_0=-1/n^2$