1. Magnetic Resonance

Consider a (spin-1/2) electron in a static magnetic field $\vec{B}_0 = B_0 \ \hat{z}$. The state of the spin at t = 0 is $|\psi_0\rangle = (|+\rangle - |-\rangle) \ / \sqrt{2}$.

- a. What is the fictitious classical spin \vec{S} associated with $|\psi_0\rangle$?
- b. At t=0, an oscillating magnetic field with amplitude $B_{\perp}=\hbar\omega_{l}/200\mu$ is applied (ω_{l} is the Larmor frequency and μ is the magnetic moment). Solve the classical equations of motion for \vec{S} (in the RWA) if...
 - i. $\vec{B}(t) = B_{\perp} \cos(\omega_l t) \hat{x}$ What other choice for $|\psi\rangle$ would give rise to the same kind of time dependence for \vec{S} ?
 - ii. $\vec{B}(t) = B_{\perp} \cos(\omega_l t) \hat{y}$
 - iii. $\vec{B}(t) = B_{\perp} \left[-\sin(\omega_1 t) \hat{x} + \cos(\omega_l t) \hat{y} \right]$ How and why is this answer different than what you found in part ii?
- c. For each case in part b, make an accurate plot / sketch of the probability of finding the electron in the |--) state vs. time.

2. Beyond the RWA

Consider a (spin-1/2) electron in a magnetic field $\vec{B} = B_1 \cos(\omega_0 t) \hat{x} + B_0 \hat{z}$, where $\omega_0 = -2 \mu B_0 / \hbar$.

- a. Writing the state of the electron as $|\psi\rangle=a_+|+\rangle+a_-|-\rangle$, what are the equations of motion for a_+ and a_- (from the time-dependent Schrodinger equation)?
- b. Make the RWA, and solve the equations from a given the initial condition $a_+(t=0)=1, a_-(t=0)=0.$
- c. Now, take the equations from part a and solve them without making the RWA, given the initial condition $a_+(t=0)=1$, $a_-(t=0)=0$. Either solve the equations analytically using special functions, or solve them numerically (e.g., using NDSolve in Mathematica). Make an accurate plot of the solution for $B_1/B_0=0.01$ and $B_1/B_0=0.1$. What is a physical explanation (using classical magnetic resonance) for the difference between the answer for part c and b?

3. Matrix Elements

A ¹³³Cs atom is in the $|F=3,m_F=0\rangle$ state in a magnetic field $\vec{B}=1$ Gauss \hat{z} . Assume that the Zeeman effect is linear (i.e., in the regime $\mu B << \Delta E_{hfs}$). A magnetic field $\vec{B}=$

 $0.01~Gauss\cos\left(rac{\Delta E_{hfs}}{\hbar}t
ight)(\hat{x}+\hat{z})$ is applied, where ΔE_{hfs} is the ground-state-hyperfine splitting for zero magnetic field. Which m_f states in the F=4 hyperfine state can the atom make a transition to? What are the effective Rabi rates $\Omega_{eff}=\sqrt{4\Omega^2+\delta^2}$ for those transitions?

In the next two problems, pick a convention for the gyromagnetic ratio (i.e., positive or negative). Also, work only in the rotating frame.

4. Quantum projection noise

A spin-1/2 particle initialized in the $|+\rangle$ state is used in a Ramsey experiment as a clock. A magnetic field $\vec{B}=B_0\hat{z}$ is always present, and a field $\vec{B}=B_\perp\cos(\omega t)\,\hat{x}$ is used for the $\pi/2$ pulses. Assume that the detuning is small and that the $\pi/2$ pulses are instantaneous, so that the fictitious spin lies in the x-y plane after the first $\pi/2$ pulse.

- a. What is the spin state after the free evolution time T and before the second $\pi/2$ pulse as a function of the detuning $\delta = \omega \omega_0$, where $\omega_0 = -2 \,\mu B_0/\hbar$?
- b. One way to think about the purpose of a clock experiment is to find the center of the peak that appears at $\delta=0$. A method for accomplishing that is to determine the frequencies at which the probability P_- to find the particle in $|-\rangle$ first falls to ½ as ω is tuned just higher and lower than ω_0 . In the simple Ramsey experiment considered here, those frequencies are $\omega_u=\omega_0+\pi/2T$ and $\omega_l=\omega_0-\pi/2T$.
 - i. What is the quantum state after the second $\pi/2$ pulse for these two frequencies?
 - ii. How is P_{-} related to $\langle S_z \rangle$?
 - iii. What is the variance Δ_-^2 , therefore, in P_- after the second $\pi/2$ pulse for $\omega = \omega_0 + \pi/2$ T and $\omega = \omega_0 \pi/2$ T?
- c. Now, let's average over N atoms. The uncertainty in P_- averaged over N measurements is the standard error of the mean: Δ_-/\sqrt{N} . Imagine that we do the following experiment. We know that $P_- = \frac{1}{2} + \frac{1}{2}\cos(\delta T)$ for small detunings. We find ω_u and ω_l by measuring P_- . Then we find $\omega_0 = (\omega_u + \omega_l)/2$. Now, we want to know our uncertainty in ω_0 . Using error propagation, what is our uncertainty in ω_0 ? Even in a perfect, noiseless experiment, this quantum projection noise limits the precision with which we can find the clock frequency. Note that certain entangled states can improve on this limit.

5. Spin Echo

A spin-1/2 particle initialized in the $|+\rangle$ state is used in a Ramsey experiment. We average each measurement of P_- over N runs of the experiment. In each run of total evolution time T, a magnetic field $\vec{B}=(B_0+\delta B_0)\,\hat{z}$ is always present, and a field $\vec{B}=B_\perp\cos(\omega_0t)\,\hat{x}$ is used for the $\pi/2$ pulses (where $\omega_0=-2~\mu B_0/\hbar$). Assume that the $\pi/2$ pulses are instantaneous and that δB_0 is very small, so that the fictitious spin lies in the x-y plane after the first $\pi/2$ pulse.

- a. If the distribution of δB_0 is uniform between $-B_0/100$ and $B_0/100$, then what is the distribution of the fictitious spin associated with the spin-1/2 particle before the second $\pi/2$ pulse?
- b. Given this distribution, what is the distribution of $\langle S_z \rangle$ and P_- after the second $\pi/2$ pulse? What is P_- averaged over all runs?
- c. The same measurement is carried out, but with an instantaneous π pulse inserted at T/2. In this case, what is the distribution of fictitious spin associated with the spin-1/2 particle before the second $\pi/2$ pulse? What is the distribution of $\langle S_z \rangle$ and P_- after the second $\pi/2$ pulse? What is P_- averaged over all runs?